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Abstract There have been several propositions for a geometric and essentially non-linear
formulation of quantum mechanics, see, e.g., (Ashtekar and Schilling, in On Einstein’s Path,
Springer, Berlin, 1998; Brody and Hughston, J. Geom. Phys. 38:19–53, 2001; Cirelli et al.
J. Geom. Phys. 45:267–284, 2003; Kibble, Commun. Math. Phys. 65:189–201, 1979). From
a purely mathematical side, the point of view of Jordan algebra theory might give new
strength to such approaches: there is a “Jordan geometry” belonging to the Jordan part of
the algebra of observables, in the same way as Lie groups belong to the Lie part. Both the Lie
geometry and the Jordan geometry are well-adapted to describe certain features of quantum
theory. We concentrate here on the mathematical description of the Jordan geometry and
raise some questions concerning possible relations with foundational issues of quantum the-
ory.

Keywords Generalized projective geometries · Jordan algebras (-triple systems, -pairs) ·
Quantum theory · Twistor theory

1 Introduction

Can quantum theory be based on the commutative and non-associative “Jordan product”

X • Y = 1

2
(XY + YX)

alone, or do we need the associative product XY somewhere in the background? In his
foundational work [25, 26], Pascual Jordan gives an affirmative answer to the first question.
From a more contemporary perspective, E. Alfsen and F.E. Schultz write ([1], p. vii): “. . . it
has been proposed to model quantum mechanics on Jordan algebras rather than on associa-
tive algebras [27]. This approach is corroborated by the fact that many physically relevant
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properties of observables are adequately described by Jordan constructs. However, it is an
important feature of quantum mechanics that the physical variables play a dual role, as ob-
servables and as generators of transformation groups. . . . Therefore both the Jordan product
and the Lie product of a C∗-algebra are needed for physics, and the decomposition of the
associative product into its Jordan part and its Lie part separates two aspects of a physical
variable.”

I think that this point of view is very interesting and deserves to be developed further.
From the mathematical side, the “Lie part” has so far attracted much more attention than the
“Jordan part”, because it has a beautiful relation with geometry, namely via the Lie functor:
to every (finite or infinite dimensional) Lie group we can assign a Lie algebra, which is a sort
of infinitesimal neighborhood of the origin of the group. Is there something similar for the
“Jordan part”—can we find a global and geometric structure (finite or infinite dimensional)
of which the Jordan algebra somehow is an infinitesimal or tangent structure? If this is so,
one should expect that this structure might play a rôle in physical theories and contribute to
the understanding of “the geometry of quantum mechanics” (I use this term here to embrace
very different approaches such as, e.g., [2] and [42]). In fact, this was the main motivation
for the author’s mathematical work on Jordan structures, leading to the result that there is
indeed a corresponding geometric object, introduced in [6] and called generalized projective
geometry. The first aim of the present work is to explain this purely mathematical theory to
readers coming from physics rather than from mathematics.

The second aim is to raise the question whether there ought to be relevant consequences
of such a “Jordan geometric” approach for physics. However, since the author is a mathe-
matician and not a physicist, I will only try to motivate why I think that this question may be
interesting, but not to answer it: if the algebra of observables is indeed equivalent to some
geometric, “global” and non-linear object, then it is possible to translate the whole formula-
tion from the linear level into a geometric and non-linear language. As long as one restricts
oneself to a faithful translation, nothing is gained, and also nothing is lost. Now, all gen-
eral arguments in favour of geometric approaches, given, e.g., in [2] and [19], remain fully
valid, and as explained by these authors, the geometric formulation inevitably suggests new
ideas and concepts which can no longer be considered as a faithful translation of the theory
we started with. In other words, at this point speculations begin. If one believes that the
present formulation of quantum theory is complete, then of course one has no reason and no
need for such speculations. For the sake of clarity I should admit that this is not my convic-
tion, and I rather adhere the point of view of several authors, explained very convincingly by
R. Penrose in [38], Chaps. 29 and 30, that the present formulation is not satisfactory and that
there are foundational problems which are “not just matter of philosophical interest” (loc.
cit., p. 865). My speculations are, to some extent, similar to those of the authors mentioned
above, but in some parts they are different and, perhaps, complementary. More specifically,
in the first section of this work, I describe the general features of Jordan geometries in an
informal way, using terms borrowed from the language of physics and thus suggesting a
hypothetical physical interpretation. The main features are:

(1) Duality. The mathematically important distinction between space and dual space, which
also is a fundamental feature of Jordan theory (cf. the notion of a Jordan pair, ex-
plained in Sect. 3), should also appear in a geometric formulation of quantum theory;
one may call it a duality between “bras” and “kets”, or between “observables” and “ob-
servers”.

(2) Linearity. It has been strongly emphasized that quantum mechanics is a linear theory—
and that, if we sacrifice linearity, this should be done in a “subtle but essential way”
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([2], Introduction). This is achieved by assuming a suitable local linear structure of our
geometries.

(3) Laws. The various local linear structures are related among each other via algebraic
laws, involving both the given geometry and its dual geometry. A generalized projec-
tive geometry is a pair (X+,X−) of geometries that are locally linear and obey certain
fundamental laws.

(4) Polarities and energy. In classical geometry, polarities are used to identify a projec-
tive geometry with its dual projective geometry. In a likewise way, suitable identifi-
cations between “observables” (X+) and “observers” (X−) in a generalized projective
geometry are called polarities. Physically, such a polarity seems to represent energy or
the Hamilton operator. However, although this interpretation matches well with the
Jordan part of the usual observable “Hamilton operator”, it matches less well with
its Lie part, which is related to the time evolution in quantum mechanics. In other
words, from a purely mathematical context we are lead to a problem looking quite
similar to the problem of the coexistence of the two quantum processes, the unitary
“U-evolution” and the “state reduction R” (here I use the labels introduced by R. Pen-
rose [37, 38]).

(5) States and non-locality. As in non-commutative geometry, and unlike the geomet-
ric approaches [2, 16, 19], we started with observables and not with (pure) states.
Nevertheless, we can associate a geometry of states to our geometry of observer-
observables. Here, a state is essentially a global object of the geometry, some-
thing like a projective line in a projective space or a light ray in compactified
Minkowski space; hence the feature of non-locality is built in these concepts, and
we feel that the analogy with Penrose’s twistor theory (cf. [38]) is not just an acci-
dent.

(6) Geometry of special relativity. From the point of view of Jordan theory, the geom-
etry of special relativity and the geometry of quantum mechanics are brothers, the
only difference being in dimension—the former is associated to Minkowski space
(which is nothing but the Jordan algebra of Hermitian 2 × 2-matrices) and the lat-
ter to the Jordan algebra of Hermitian operators in an infinite dimensional Hilbert
space. Therefore everything we have said so far applies as well to the geometry of
special relativity (the conformal compactification of Minkowski space). In particu-
lar, pure states in the geometry of special relativity indeed lead to Penrose’s twistor
space.

(7) Hermitian symmetric spaces. On the one hand, the importance of the “complex Her-
mitian” structure of quantum mechanics has been emphasized, e.g., in [19] and in [38].
On the other hand, there is a well-known relation between Hermitian symmetric spaces
of non-compact type, also known as bounded symmetric domains, and certain (“posi-
tive Hermitian”) Jordan structures, see [40]. Our setting generalizes this correspondence
in several regards. Therefore, although at a first glance it looks rather different, it has
close relations to previous work of several authors relating such structures to physics,
and especially to quantum mechanics (cf. [22, 41] and the extensive bibliography given
in [24]).

Throughout the text, I try to illustrate all these concepts by simple examples from linear
algebra, so that the reader will more easily grasp (or be able to skip) the formal mathemat-
ical definitions which are given in Sect. 4. In Sect. 3, we give a brief introduction to basic
notions of Jordan theory. The main result (equivalence of categories between Jordan theory
and generalized projective, resp. polar geometries) is stated in Sect. 4.6. Finally, in Sect. 5,
I come back to the issue of possible relations between physics and Jordan geometry—the
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least one can say is that some of its features match certain requirements on possible new ap-
proaches to the foundations of quantum physics that have been put forward. Moreover, the
similarity with the geometry of special relativity (item (6) above) may suggest how to carry
such ideas even further, following the ideas that have lead from special to general relativity.

2 The General Geometric Framework

2.1 Duality

Not only in mathematics, but also in physics it is useful to distinguish between a vector space
V and its dual space V ∗, even if finally one wishes to identify them. In Jordan theory, exactly
the same phenomenon occurs: it turns out to be useful to look at so-called “Jordan pairs”
(V +,V −) instead of a single Jordan algebra V , even if one often is interested in identifying
V + and V − with V as sets (see Sect. 3 for the formal definitions).

Therefore we define our geometric “universe” as a pair geometry (X+,X−); this means
just that X+ and X− are sets, which we call the space of observables and the space of
observers, respectively, such that there exists a basic transversality relation, denoted by �:
a pair (x,α) ∈ X+ ×X− is called transversal, and we then also say that “α can observe x”,
and we then write α�x or x�α, such that

(a) every observer can observe at least one observable: for all α ∈ X−, there exists x ∈ X+
with x�α;

(b) every observable can be observed by at least one observer: for all x ∈ X+, there exists
α ∈ X− with x�α.

Here and in the sequel, all assumptions will be such that we can turn things over: the rôle of
X+ and X− is entirely symmetric—the pair (X−,X+) is a universe with the same rights as
(X+,X−), called its dual universe. Writing

α� := {x ∈ X+|α�x}

for the set of observables that can be observed by an observer α (the “visible world of α”),
our assumption means that X+ is covered by such sets, and vice versa. In contrast, the set
X+ \ α�, called the horizon or the infinite set of α, may or may not be empty.

Example A familiar example of a pair geometry is given by a projective space X+ = P(W)

and its dual projective space of hyperplanes X− (which may be identified with P(W ∗), where
W is a vector space and W ∗ its dual space), with x�α meaning that x does not belong to
the hyperplane α; in other words, α� is the complement of the hyperplane α, and its horizon
is the usual “hyperplane at infinity”. In the same spirit, one may consider the Grassmann
geometry of type E and co-type F ,

(X+,X−) = (GrasF
E(W),GrasE

F (W)),

where W = E⊕F is a fixed direct sum decomposition of the vector space W , and GrasB
A(W)

denotes the set of all subspaces Y in W that are isomorphic to A and such that Y has some
complement that is isomorphic to B . A pair (U,V ) ∈ X+ ×X− is transversal if and only if
U and V are complementary subspaces: W = U ⊕ V .
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2.2 Linearity

The next structural ingredient to be added to our universe (X+,X−;�) is the principle of
linearity: for all observers α, the visible world α� is a linear space. More precisely, fix-
ing an arbitrary observable o ∈ α� as “origin” in α�, we require that a structure of a lin-
ear (i.e., vector) space with origin o be given on α�. By duality, the same shall hold for
o� with origin α; if such a structure is given for all transversal pairs (o,α), we say that
(X+,X−,�) is equipped with a structure of linear pair geometry. It may happen that the
underlying affine space structure on (α�, o) does not depend on the choice of the origin o;
if this is always the case, the geometry is called an affine pair geometry. In other words,
α� then canonically carries the structure of an affine space. In any case, we think of X+
as “modelled on the linear space α�”, just as usual projective space RP

n is modelled on
usual affine space R

n, and it is not misleading to picture X+ as a, finite or infinite dimen-
sional, smooth manifold, covered by “linear chart domains” α� which in turn are indexed
by α ∈ X−.

Example Consider the Grassmann-geometry (GrasF
E(W),GrasE

F (W)): it is a well-known
exercise in linear algebra that the set of complements of a given subspace carries canonically
the structure of an affine space, modelled on the linear spaces of linear operators Hom(F,E),
respectively Hom(F,E). Thus (GrasF

E(W),GrasE
F (W)) is an affine pair geometry.

More generally, one may consider the geometry (Flagf
e,Flage

f) of all flags in W of a given
“type” and “cotype”, equipped with a natural transversality relation; this defines a linear pair
geometry which, however, is no longer affine in general (cf. [12]).

2.2.1 Time

When we speak about vector spaces, we must specify a base field K. We consider K as
“time”, although by no means we want by this to fix the choice to be K = R, the real
base field—some may prefer a “complex time”, or a “p-adic time” or yet another model
(see [38], Chap. 16 for some remarks on the “base field of physics”). Personally, I prefer
models in which “infinitesimal times” exist, like the ring R[ε] = R ⊕ εR (ε2 = 0) of dual
numbers, where ε may be related in some mysterious way to the Planck time. Thus, instead
of fields, we will admit also (commutative unital) base rings, and the term “linear space”
means just “K-module”. By a fortunate coincidence of terminology, the unit group K

× of
K can then be seen as the set of possible “units of time measurement”; the non-invertible
elements of K may be considered as “infinitesimal times”, which cannot be used as units
of time measurement. Whatever the structure of time be, and in contrast to a trend set by
Hilbert’s “Foundations of Geometry” (cf. [17]), we accept the base ring K as God-given,
and we do not try to “reconstruct” it from incidence structures or other data.

2.2.2 Laws

We assume that the universe (X+,X−) is a linear or, better, affine pair geometry over K,
governed by laws. These laws give it a certain structure, somewhat similar to the one of a
projective geometry (PH,PH∗) of a Hilbert space H, but more flexible and incorporating
many other situations. In a sense, these laws describe the “basic rules of communication”
between various observers α,β and their visible worlds α�, β� which, after all, shall be
interpreted by α and β as their images of the same world—at least, if they live sufficiently
close to each other so that the common part α� ∩ β� of their visible worlds is non-empty.
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The formal statement of such laws, to be given in Sect. 4, is described by identities for the
so-called structure maps: if x�α, y�α, z�α and r ∈ K, then let rx,α(y) := ry denote the
scalar multiple r · y, and y +x,α z := y + z the sum of y and z in the K-module α� with zero
vector x. In other words, we define maps of three (resp. four) arguments by

�r := �+
r : (X+ ×X− ×X+)� → X+, (x,α, y) �→ �r(x,α, y) := rx,α(y),

� := �+ : (X+ ×X− ×X+ ×X+)� → X+, (x,α, y, z) �→ �(x,α, y, z) := y +x,α z,

where the domain of definition of �r is the “space of generic triples”,

(X+ ×X− ×X+)� = {(x,α, y) ∈ X+ ×X− ×X+|x�α, y�α},
and the domain of � is the similarly defined space of generic quadruples. By duality, �−

r

and �− are defined. The structure maps encode all the information of a linear pair geometry:
by fixing the pair (x,α), the structure maps describe the linear structure of (α�, x), resp.
of (x�, α). In this way, linear pair geometries can be regarded as algebraic objects whose
structure is defined by (one or several) “multiplication maps”, just like groups, rings or
modules, and just like these they form a category (as usual, morphisms are maps that are
compatible with the structural data). In Sect. 4 the class of generalized projective geometries
will be singled out by requiring certain identities for these structure maps.

Example Again in the example of the Grassmann geometry, one can give an explicit formula
for the structure maps in terms of linear algebra: identifying elements of GrasF

E(W) with
images of injective maps f : E → W , modulo equivalence under the general linear group
GlK(E) (f ∼ f ′ iff ∃g ∈ GlK(E): f ′ = f ◦ g), and elements of X− = GrasE

F (W) with
kernels of surjective maps φ : W → E, again modulo equivalence under GlK(E), the basic
transversality relation is: [f ]�[φ], if and only if φ ◦ f : E → E is a bijection. Then the
structure map �r is given by the explicit formula

�r([f ], [φ], [h]) = [
(1 − r)f ◦ (φ ◦ f )−1 + rh ◦ (φ ◦ h)−1

]
.

(Proof, cf. [8]: first of all, note that the expression on the right-hand side is independent of
the chosen representatives; then choose new representatives such that φ ◦ f = idE = φ ◦ h,
and observe that this gives the usual formula of a barycenter in an affine space.) As in
ordinary projective geometry, the affine picture in the model space Hom(E,F ) is given by
writing f : E → W = F ⊕ E as “column vector” and normalizing the second component to
be 1E , the identity map of E, and similarly for the “row vector” φ : F ⊕ E → E (see [8]).
To get a feeling for the kind of non-linear formulas that appear in such contexts, the reader
may rewrite the preceding formula for �r by replacing f,φ and h by such column-, resp.
row vectors, and then renormalize the right-hand side, in order to get the formula for the
multiplication map in the affine picture. The special case r = 1

2 (the “midpoint map”) is
particularly important from a Jordan-theoretic point of view.

2.2.3 Base Points

Although this may seem pedantic, we insist in clearly distinguishing between linear pair
geometries and those with base point: a base point is a transversal pair, often denoted by
(o+, o−) or (o, o′), that is chosen to be fixed “once and for all” (or, at least, until to the
end of the present sentence). Whereas geometric concepts should be base point-free, our
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description of the universe often uses them—from our ant’s perspective we often do not
realize that our visible world is just a part of the whole universe, and we take this part for
the whole. This remark applies to special relativity as well as to quantum mechanics.

Example We explain the last statement. This can be done both in the context of abstract
C∗-algebras or in the concrete realization on a Hilbert space H. For simplicity, let us start
with the latter (the more abstract setting will be considered in Example 2 of 2.3.2): let
H be a finite or infinite dimensional complex Hilbert space. Our geometry (X+,X−) will
be a subgeometry of the Grassmann geometry (Y+,Y−) = (GrasHH(W),GrasHH(W)) where
W = H ⊕ H. Note that here Y+ = Y− as sets. Now we define X+ = X− to be the space of
Lagrangian subspaces on W for the Hermitian form (of “signature (∞,∞)”)

ω : W × W → K, ω((u, v), (u′, v′)) = 〈u,v′〉 + 〈v,u′〉.

In other words, (X+,X−) is the subgeometry of (Y+,Y−) fixed under the involutive auto-
morphism “orthocomplementation w.r.t. ω” (by definition, a Lagrangian subspace E is such
that E = E⊥). As in the preceding examples, it is an exercise in linear algebra to show that
this affine pair geometry is modelled on the space of Hermitian operators Herm(H).

The usual framework of quantum mechanics is simply obtained by fixing a base point
(o, o′) in the Lagrangian geometry (X+,X−), where o′ singles out an affine part Herm(H)

in X+ in which o is the zero vector. Of course, H should then be infinite dimensional. If
H is finite dimensional, say H = C

n, then X+ and X− are homogeneous spaces under the
action of the projective pseudo-unitary group PU(n,n), with stabilizer P of o being a certain
maximal parabolic subgroup, so that X+ ∼= PU(n,n)/P is modelled on the (Jordan algebra
of) Hermitian n×n-matrices Herm(n,C). Now, for n = 2, this Jordan algebra is isomorphic
to Minkowsi space R

(3,1), the group PU(2,2) is isomorphic to the conformal group SO(4,2)

of Minkowski space, and X+ ∼= SO(4,2)/P is precisely the conformal compactification of
Minkowski space. Therefore our geometric setting of quantum mechanics can be seen as
the infinite dimensional analog of the geometric, conformal completion of usual, flat special
relativity. The fact that quantum mechanics and special relativity appear as linear theories
corresponds to the fact that a base point (o, o′) has been fixed.

2.3 Energy

As long as the two dual worlds X+ and X− remain neatly separated, we are in the realm of
“projective geometry”, which is a beautiful theory, but lacks the dynamics that we are used
to from the real world. In order to create dynamics, we must introduce some sort of iden-
tification between X+ and X− which, mathematically, is modelized by a pair of bijections
p+ : X+ → X−, p− : X− → X+. Henceforth, the observable x and the observer p+(x) will
be considered as “the same thing”, and similarly the observer α and the observable p−(α)

are the same thing. Consistency requires then that p− is the inverse transformation of p+,
and moreover that (p+,p−) respects the laws mentioned above (i.e., it defines an isomor-
phism of the geometry onto its dual geometry). Geometrically, this corresponds to what is
sometimes called a correlation in projective geometry, but from the point of view of physics,
it seems that it really is some sort of energy. Since it acts as a transformation, one might be
tempted to use also the term Hamilton operator for p+ or for its inverse p−.
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2.3.1 Polarities

There is something special about human beings, namely that we can observe ourselves. Let
us call an observer active or non-isotropic if it has this property, i.e., if α�p−(α), and pas-
sive or isotropic else. In order to create dynamics, we must require that at least some active
observers shall exist; then our correlation (p+,p−) is called a polarity. In the remainder, we
will mainly be concerned with the “active universe” M(p) = {x ∈ X+|x�p+(x)}. We do not
require that the whole universe is active—this may happen for very strong energies which
we call elliptic polarities, but in general, it seems that polarities of hyperbolic type are more
interesting since singular points, such as possible “beginnings” or “ends of the universe”,
will have to be passive.

Example Polarities of projective spaces are constantly used in classical geometry: assume
W is a real Hilbert space; then one identifies a line [x] ∈ X+ = P(W) with its orthogonal
hyperplane [x]⊥ ∈ X− = P(W ∗). Since a scalar product is positive, there are no isotropic
vectors: the polarity is elliptic. But we may also work with general non-degenerate forms
(symmetric or skew-symmetric) and then get more general polarities. If we work over com-
plex Hilbert spaces, then the scalar product induces a C-antilinear polarity (so we are work-
ing with complex geometries, considered as real ones); there are of course also C-linear
polarities, coming from non-degenerate C-bilinear forms on W , but their polarities always
have isotropic elements. It is clear that such kinds of “orthocomplementation polarities” can
be defined also for Grassmann geometries (provided that the K-module W admits suitable
non-degenerate bi- or sesquilinear forms). In any case, the affine picture of such kinds of
polarities is given by identifying a linear operator from Hom(E,F ) with a suitable adjoint
in Hom(F,E).

2.3.2 Null-Systems

On the other hand, it is theoretically possible that energies are so weak that they admit no
active observables whatsoever; one would call them null-energies or null-systems. It is even
theoretically conceivable that there be an absolute null-energy which is defined to be a pair
(n+, n−) of mutually inverse bijections as above, commuting with all internal symmetries of
the universe (X+,X−); we then say that our geometry is of the first kind, or a null geometry.
In this case, the identification X+ ∼= X− is much more canonical than for any Hamilton
operator, so that it makes indeed sense to call the point n−(α) for an observer α its “point
at infinity”. An apparently trivial example of this situation is the projective line X+ = KP

1,
which is canonically the same as its dual projective line X− of “hyperplanes” (=points) in
KP

1; but clearly this identification is a null-system (a line is never transversal to itself!) and
not a polarity (algebraically, this identification comes from the canonical symplectic form
on K

2). We are thus forced to switch constantly between two different ways of identifying
X+ and X−, namely by the Hamilton operator p, who governs the geometry of the active
world, and by the “underlying” null energy n. This is indeed a good reason for distinguishing
X+ and X− from the outset. Without this clear distinction, one arrives at paradoxes such as
“every active observer is both identical with its zero vector and with its point at infinity”.
The observer might simply say “I am my origin and my point at infinity”.

Example 1 The projective line Gras1(K
2) is generalized by the Grassmannians Grasn(K

2n),
or, in arbitrary dimension, by the “type = cotype” Grassmann geometry (GrasE

E(W),

GrasE
E(W)) with W = E⊕E: the identity map X+ → X− is indeed a canonical null-system.
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Note that in this case X+ and X− are modelled on End(E) = Hom(E,E), which is an as-
sociative algebra.

The Lagrangian geometry introduced above is also a null geometry, where the null system
is the identity map from X+ to X−. Since quantum mechanics corresponds to the choice of
a base point (o, o′) in this geometry, polarities should always be compatible with this base
point, i.e., o′ = p+(o). The fixed Hilbert structure on H corresponds to the choice of the
standard elliptic polarity given by orthocomplementation in the Hilbert space W = H⊕H,
or to the standard hyperbolic polarity, given by orthocomplementation with respect to the
neutral form β((u, v), (u′, v′)) := 〈u,u′〉 − 〈v, v′〉.

Example 2 The example of the projective line is indeed quite typical: it is not misleading to
consider “null geometries” as a rather subtle generalisation of the projective line. In fact, as
mentioned above, End(E) is an associative algebra; so let us start with a general associative
algebra A and define X+ = X− to be the projective line over A, which by definition (cf.,
e.g., [17]) is the set AP

1 := GrasA
A(A⊕A) of all submodules of the left A-module A⊕A that

are isomorphic to A and admit a complementary submodule isomorphic to A. This geometry
is modelled on A, and again the identity map X+ → X− is a canonical null-system.

More important for physics are subgeometries of the projective line that are induced
by fixing an involution ∗ : A → A (antiautomorphism of order 2; if the base field K itself
carries a distinguished involution, we may also require that ∗ is antilinear with respect to
this involution). Then the involution ∗ lifts to an involution of the projective line AP

1 whose
fixed point set is called the Hermitian projective line, cf. [14], Sect. 8. Again, this is a null
geometry, and it generalizes the Lagrangian geometry from Example 1.2.3. It is therefore the
geometric object corresponding to the abstract C∗-algebra approach to quantum mechanics.

Of course, quantum mechanics requires to work over the field C of complex numbers
and the involution ∗ to be C-antilinear. This has the particular consequence that the spaces
of Hermitian elements (a∗ = a) and skew-Hermitian elements (a∗ = −a) are isomorphic,
whereas for more general involutions this need not be the case (e.g., real square matrices
with ∗ being the usual transpose). Correspondingly, in the general case there is also a skew-
Hermitian projective line, which in general is not isomorphic to the Hermitian one (to be a
bit more precise: the skew-Hermitian projective line essentially corresponds to the unitary
group of (A,∗), considered as a homogeneous space under an even bigger group), but in
the case of quantum mechanics happens to be isomorphic to the Hermitian projective line.
This “accident” corresponds to the ambiguity in the interpretation of observables (see the
quotation from [1] given in the Sect. 1), and we have the impression that it is also related to
the problem of time development (“unitary U-evolution versus state reduction R”; see item
(4) in the Sect.1 and Sect. 2.3.3.2 below).

2.3.3 Dynamics

We affirmed above that a polarity creates dynamics. This needs explanation: as a general
fact, any polarity of a generalized projective geometry defines, on the “active universe”
M(p), the structure of a symmetric space—thus there is a canonical torsion free affine con-
nection together with its associated groups, and the notions of geodesics and of geodesic
flow on the tangent bundle TM(p) are defined. This is best seen by looking at some ex-
amples, at least in the finite-dimensional real case; in the general infinite-dimensional case,
these notions are somewhat less standard, and we comment on this below.

Example Let us first look at elliptic polarities of finite-dimensional geometries, which lead
to compact symmetric spaces: in all cases, this polarity is given by orthocomplementation
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with respect to a (real or complex) scalar product, so the relevant automorphism groups
are orthogonal, resp. unitary groups, which act transitively on the geometry. We thus can
write X+ ∼= U/K , U a compact Lie group and K essentially the group of fixed points of an
involution σ of U :

• for the real Grassmannians X+ ∼= O(p + q)/O(p) × O(q),
• for the complex Grassmannians X+ ∼= U(p + q)/U(p) × U(q) (the special case p = 1

corresponds to ordinary projective spaces),
• for the complex Hermitian Lagrangian geometry X+ ∼= U(n) × U(n)/diag ∼= U(n).

These spaces are well known to be compact symmetric spaces, and the last two series are
moreover Hermitian symmetric spaces [23, 31]. It is known that all compact symmetric
spaces of “classical type” can be obtained in a similar way (cf. [5]). The non-compact dual
G/K of U/K can be obtained by taking a slightly modified polarity (hyperbolic polarity);
in this case, the active universe M(p) is a dense open subset of X+ which is no longer con-
nected, but one of the connected components is always the non-compact dual G/K (the in-
clusion G/K ⊂ X+ = U/K generalizes the well-known Borel-imbedding, cf. [23]). For in-
stance, the non-compact duals of the projective spaces are the real, resp. complex hyperbolic
spaces, realized as “balls” in R

n, resp. C
n (cf. also [22]). Finally, it is also possible to choose

polarities that are of yet different type, such that M(p) is a pseudo-Riemannian symmetric
space. For instance, the de Sitter and anti-de Sitter models of general relativity are obtained
by suitable polarities of the Lagrangian geometry for n = 2. Replacing C

n by a Hilbert space
and the groups U(p, q) by suitable infinite dimensional unitary groups, these examples gen-
eralize. In particular, the elliptic polarity of the infinite dimensional Lagrangian geometry
leads to the identification of the “conformal completion X+ of Herm(H)” with the uni-
tary group U(H), which here is seen as an infinite dimensional Hermitian symmetric space
U(H) × U(H)/diag ∼= U(H).

Concerning the dynamical system induced by a polarity, there are (at least) two serious
problems:

2.3.3.1 Integration The first problem is of analytic nature. It arises when we try to “in-
tegrate” the differential equations of the dynamical system, for instance, to obtain the geo-
desic flow corresponding to a spray. Here, properties of the base ring K start to play a rôle:
whereas the choice of K = R or K = C implies a tendency towards a more deterministic
behavior (via existence and uniqueness theorems for ordinary differential equations), this
may be much less the case for other base fields or rings (for instance, there are no general
existence and uniqueness theorems for p-adic differential equations). For physics this may
seem not to be a too serious issue since one is mainly interested in real or complex Hilbert
or Banach space settings and not in “too wild” infinite dimensional situations where basic
theorems on ordinary differential equations may fail.

2.3.3.2 The U-evolution The second problem is of a more geometric nature. It arises when
we try to identify, in the case of the Lagrangian geometry corresponding to usual quantum
mechanics, the U-evolution (unitary evolution defined by the Schrödinger equation) with a
flow defined in terms of geometry (say, with the geodesic flow of a symmetric space). If a
base point (o, o′), an additional observable H and a polarity p are fixed, there are several
possibilities to associate dynamical systems to this situation, but at present none of them
really seems to coincide with the usual U-evolution. Perhaps should it be necessary to use
the description by an observer α = α(t) which also moves in X−, in order to obtain the
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usual picture? Or is it indeed necessary to invoke some “associative feature” that cannot be
captured by a Jordan description alone (cf. the quotation from [1])? In [2] it is explained,
following Kibble [30], that the Schrödinger evolution can indeed be interpreted as a Hamil-
tonian flow in a suitable geometric setting; thus, at least, it seems reasonable to look for an
interpretation of the U-evolution in geometric terms also in the present setting.

2.3.4 Curvature

Regardless whether we are able to integrate differential equations or not, there is always
a notion of curvature of an affine connection—in general, the symmetric spaces defined
by a polarity will have non-vanishing curvature. The curvature tensor is a trilinear map
satisfying the defining identities of a Lie triple system (see Sect. 3.6), and it contains all
local information about the symmetric space, just as does the Lie algebra of a Lie group.
The Jordan product is closely related to the Lie triple system (Sect. 3.6), and thus the Jordan
product can geometrically be interpreted as a curvature feature.

2.4 States and Pure States

We started with observables (and observers) as fundamental objects of our theory, and not
with states. On the other hand, in usual quantum mechanics, the pure states form a pro-
jective space P(H), and it might seem more natural to take the “geometry of pure states”
(P(H),P(H∗)) as basic object of a geometric approach to quantum mechanics—this is in-
deed the common ground of all such approaches we know about, see, e.g., [2, 16, 19, 30,
42]. What is the relation between these approaches and the one proposed here?

In a linear pair geometry (X+,X−) there is a natural notion of intrinsic subspace or state
(in X+): it is defined as a subset I ⊂ X+ which, to any observer α ∈ X−, appears linearly,
i.e., I ∩α� is a linear subspace of α�, regardless which origin o ∈ I ∩α� we choose, and it
is called minimal or a pure state if it is of rank 1, i.e., it is not reduced to a point and does not
properly include intrinsic subspaces that are not points. Similarly, states in X− are defined;
we may call them “dual states” or “kets”. The best way to get some idea on these concepts
is to look at examples:

Example 1 States of the Grassmann geometry (X+,X−) = (GrasF
E(W),GrasE

F (W)) can be
constructed as follows: fix some flag 0 ⊂ F1 ⊂ F2 ⊂ W and let

I := {A ∈ X+|F1 ⊂ A ⊂ F2}
be the set of all elements of the Grassmannian that are “squeezed” by this flag. Then I is
an intrinsic subspace. Conversely, if K is a field and W = K

n is finite-dimensional, then
all intrinsic subspaces are of this form ([12], Theorem 3.11). Such a state is pure if the
codimensions are minimal, i.e., if dimE = dimF1 +1 = dimF2 −1. In particular, in the case
of an ordinary projective geometry P(W) (i.e., dimE = 1), states are the usual projective
subspaces in P(W), and pure states are projective lines in P(W). As is well-known, every
affine subspace in the affine picture then corresponds to a state (namely, to the projective
subspace which is its completion). The situation changes drastically if dimE > 1: then only
rather specific affine subspaces of the affine part belong to states, namely the so-called inner
ideals of the corresponding Jordan pair (see Sect. 3.7). In particular, it follows that pure
states through the origin of the affine part Hom(E,F ) are represented by rank-one operators
in the usual sense.
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Example 2 States of the Lagrangian geometry are constructed similarly, by taking La-
grangian flags (i.e., flags 0 ⊂ F1 ⊂ F2 ⊂ W with F⊥

1 = F2). Then similar results as in the
Grassmann case hold; in particular, pure stats through the origin of the linear part Herm(H)

are represented by Hermitian rank-one operators, i.e., by projectors on one-dimensional sub-
spaces of H. We thus recover the space of pure states of usual quantum mechanics: it is the
space of all minimal intrinsic subspaces running through a fixed “origin” o ∈ X+.

2.4.1 The Geometry of States

We denote by S± the collection of all states in X±, or perhaps of all pure states, or of states
of some given rank r , and we think of states as elements of a new geometry (S+,S−) which
is associated to our universe (X+,X−) in a similar way as, for example, one associates to a
usual pair of dual projective spaces (PV,PV ∗) the geometry of all projective subspaces, or
of subspaces of a given rank. One may ask whether (S+,S−) is again a “good” geometry—
a look at our standard examples shows that this is indeed quite often the case:

Example The preceding Example 1 shows that intrinsic subspaces of Grassmannians corre-
spond to short flags 0 ⊂ F1 ⊂ F2 ⊂ W , where the rank of the intrinsic subspace corresponds
to the type of the flag (characteristic dimensions, for instance). Thus (S+,S−) is a flag
geometry. As mentioned in the example of Sect. 2.2, such geometries are again linear pair
geometries. However, they are in general no longer affine pair geometries: indeed, they are
of the form (G/P −,G/P +), where the parabolic subgroups P ± are no longer associated
to 3-gradings, but to 5-gradings (see Sect. 3.1). Such geometries attract much interest in
current research since they are related to “non-commutative Jordan structures” and also to
exceptional geometries. The same remarks hold for the geometry of states of a Lagrangian
geometry: it corresponds to certain 5-gradings of the Lie algebra of SU(n,n).

Coming back to the geometry of quantum mechanics, we now have to carefully distin-
guish between two notions of “pure states”: first, the usual one (minimal intrinsic subspaces
running through the fixed origin, leading to projective space P(H)), and second, the new
base point-free interpretation (leading to the geometry of short Lagrangian flags). In view
of the preceding remarks, this change corresponds to passing from usual, commutative Jor-
dan algebraic structures to non-commutative ones. Thus we enter into a “non-commutative
Jordan geometry”—if the term “second quantization” were not already taken, it would be
tempting to use it here. Of course, we do not know if this new non-commutativity is reflected
anywhere in physical reality, but at least theoretically there might be some possibility here
to test experimentally whether the second interpretation has some physical meaning.

2.4.2 Comparison with Twistor Geometry

Another striking feature of our interpretation of states is the similarity with the double fi-
brations from Penrose’s twistor theory: the interpretation of states as intrinsic subspaces
produces a new duality—a duality between the “geometry of observables” (X+,X−) and
the “geometry of states” (S+,S−). This new duality corresponds to the double fibration

Z+
↙ ↘

X+ S+

where Z+ = {(x,I)|x ∈ I} ⊂ X+ × S+ is the “incidence space” (“x is incident with I”).
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Example For K = C and X+ = Gras2(C
4), S+ = CP

3 = Gras1(C
4), we get the complexi-

fied setting of Penrose’s twistor theory as described in [3], p. 8. Here, S+ rather corresponds
to a geometry of maximal intrinsic subspaces. In the more sophisticated setting from [38],
Chap. 33, starting with (compactified) real Minkowski space, light rays indeed correspond
to minimal intrinsic subspaces, and S+ forms a 5-graded geometry of Lagrangian flags as-
sociated to SU(2,2). In any case, our setting incorporates aspects of non-locality that have
been a main motivation of Penrose’s for developing twistor theory: a pure state is a “line”
and thus is a global object of our universe X+. Note finally the change of rôle of “observ-
ables” and “states”: by analogy with quantum theory, we are driven to call “pure state” the
light rays and not the points of Minkowski space, which rather correspond to “observables”,
whereas classically points of a manifold are rather viewed as pure states. Compare with
[38], p. 964: “there is a striking reversal of this in twistor space, since now the light ray is
described as a point and an event is described as a locus.”

2.5 Open Ends

The reader who wishes to recover the familiar picture of quantum mechanics will wonder
(at least) about the following questions:

(1) How is “measurement” and “state reduction” described? As to the mathematical frame-
work, the analog of “eigenvectors” and “diagonalization” (with respect to some com-
plete family of pure states through a given point, which is the analog of a Hilbert basis)
is perfectly well-defined (I will not go into details; the specialist may look at [33]). As
to its interpretation as “state reduction”, I prefer not to make any statements—following
the advice of J. Bell ([4], p. 126): “Concepts of ‘measurement’, or ‘observation’, or
‘experiment’ should not appear at a fundamental level.”

(2) What, after all, shall be the interpretation of the “universe” (X+,X−): shall we think of
it as space-time of relativity, or quantum mechanically as a single particle, or as a many-
particle system, or as a field of “all” particles? According to the standard formalism
of quantum mechanics, there should be some way to compose a many-particle system
from single particles, formalized by the tensor product of Hilbert spaces; but there is
no “tensor product of Jordan algebras”, and accordingly there is no obvious notion of
“tensor product of generalized projective geometries”. This is indeed a serious problem;
I will comment in the last section on some possible ways of attack.

3 Jordan Theory

3.1 Historical Remark

As mentioned in Sect. 1, Pascual Jordan’s Ansatz started with the observation that any as-
sociative algebra, such as finite or infinite-dimensional matrix algebras, equipped with the
new product x • y = 1

2 (xy + yx), becomes a commutative algebra which is not associative
but satisfies another identity, namely

(x2 • y) • x = x2 • (y • x).

In case that 2 is invertible in K (which we will always assume), this identity then served as
axiomatic definition of a class of commutative algebras, the later so-called Jordan algebras
(see Part I of [34] for a detailed historical survey of Jordan theory). Unfortunately, this
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axiomatic definition is much less appealing than the one of a Lie algebra, and therefore we
prefer to skip some 40 years of historical development and turn right away to more general
objects that are easier understood, namely to Jordan pairs and Jordan triple systems. Let
us, however, point out that a Jordan algebra is called special if it is a subalgebra of some
associative algebra with the symmetrized bullet-product; there exists essentially only one
exceptional Jordan algebra (the 27-dimensional Albert algebra, which has attracted some
attention also in physics, most notably by work of M. Günaydin and his collaborators, see
the extensive bibliography in [24]). The other classical Jordan algebras are:

Example Here are the main families of special Jordan algebras:

(1) full matrix algebras M(n,n;K) (full endomorphism algebras of a linear space),
(2) symmetric and Hermitian matrices Sym(n,K), resp. Herm(n,K) (selfadjoint operators

of an inner product space),
(3) skew-symmetric matrices in even dimension (selfadjoint operators with respect to a

symplectic form),
(4) spin factors: vector spaces V with symmetric bilinear form β : V × V → K and a dis-

tinguished element e with β(e, e) = 1, with product

x • y := β(x, e)y + β(y, e)x − β(x, y)e.

3.2 Jordan Pairs and 3-Graded Lie Algebras

A 2k + 1-graded Lie algebra is a Lie algebra of the form

g = g−k ⊕ · · · ⊕ g0 ⊕ g1 ⊕ · · · ⊕ gk

(k ∈ N) such that [gi ,gj ] ⊂ gi+j . By convention, gi = 0 for i /∈ {−k, . . . , k}. We are particu-
larly interested in 3-graded Lie algebras (k = 1); then our the condition implies that g1 and
g−1 are Abelian subalgebras of g. Let V ± := g±1. We define trilinear products

T ± : V ± × V ∓ × V ± → V ±, (x, y, z) �→ [[x, y], z].
From the Jacobi identity in g, together with the fact that g±1 are Abelian subalgebras of g,
we then easily get the following two identities:

T ±(x, y, z) = T ±(z, y, x), (LJP1)

T ±(a, b,T ±(x, y, z))

= T ±(T ±(a, b, x), y, z) − T ±(x, T ∓(b, a, y, z)) + T ±(x, y,T ±(a, b, z)). (LJP2)

By definition, a (linear) Jordan pair is a pair (V +,V −) of K-modules together with trilinear
maps T ± : V ± × V ∓ × V ± → V ± satisfying (LJP1) and (LJP2). Every linear Jordan pair
is obtained by the construction just described (sometimes this is called the Kantor-Koecher-
Tits construction); the easiest proof is by noting that V + ⊕ V − carries the structure of a
(polarized) Lie triple system, and then the so-called standard imbedding of this Lie triple
system yields a 3-graded Lie algebra (cf. [5], Chap. III).

Example All classical Lie algebras admit 3-gradings (if we allow sl(n,K) to be replaced by
gl(n,K)). Let us consider the Lie algebra g = gl(W) of all endomorphisms of a linear space
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W and fix a direct sum decomposition W = E ⊕ F . Then we have an associated 3-grading
g = g−1 ⊕ g0 ⊕ g0, where, in an obvious matrix notation,

g1 :=
{(

1 x

0 1

)
|x ∈ Hom(F,E)

}
, g−1 :=

{(
1 0
y 1

)
|y ∈ Hom(F,E)

}
,

and g0 given by the “diagonal matrices” in g. Calculating the triple bracket [[x, y], z] for
x, z ∈ g1, y ∈ g−1, we see that the corresponding Jordan pair is

(V +,V −) = (Hom(F,E),Hom(E,F )) with T ±(x, y, z) = xyz + zyx.

Next, the symplectic Lie algebra sp(H ⊕ H) and the orthogonal Lie algebra o(H � H),
with respect to the symplectic form ω((u, v), (u′, v′)) = 〈u,v′〉 − 〈v,u′〉, resp. with re-
spect to the symmetric form β((u, v), (u′, v′)) = 〈u,v′〉 + 〈v,u′〉 on H ⊕ H, are subalge-
bras of gl(H ⊕ H) and inherit from it a 3-grading. The corresponding Jordan pairs are of
the form (V +,V −) = (V ,V ) where V is the space of symmetric (or Hermitian), resp. of
skew-symmetric (or skew-Hermitian) matrices, with trilinear map given by the same for-
mula as above. The similarity in notation with the description of Grassmann and Lagrangian
geometries is of course not an accident (see explanations below). Finally, some orthogonal
Lie algebras admit another family of 3-gradings, leading to Jordan pairs related to the spin-
factors defined above. Exceptional Lie algebras not always admit a 3-grading; for instance,
G2, F4 and E8 do not, whereas some forms of E6 and E7 do.

3.3 Jordan Triple Systems and Involutive 3-Graded Lie Algebras

Assume now that g is a 3-graded Lie algebra together with an involution θ , i.e., an auto-
morphism of order 2 reversing the grading: θ(gi ) = g−i . Then let V := V + = θ(V −) be
equipped with the trilinear product

T (x, y, z) := T +(x, θy, z) = [[x, θy], z]
which clearly satisfies the two identities (JT1) and (JT2) obtained from (LJP1) and (LJP2)
by omitting the superscripts ±1. By definition, a Jordan triple system is a K-module V

together with a trilinear map T : V × V × V → V satisfying (JT1) and (JT2). Every Jordan
triple system is obtained by the construction just described: from (V ,T ) one recovers a
Jordan pair (V +,V −, T ±) by letting V + := V − := V and T ± := T , and then applies the
“Kantor-Koecher-Tits construction” outlined above.

Example All 3-graded Lie algebras from the preceding example admit involutions, but in
general there is no distinguished one. The matrix realization given above privileges the invo-
lution given by θ(X) = −Xt (negative transpose), which leads to the matrix triple systems
given by T (X,Y,Z) = −(XY tZ + ZY tX).

3.4 Unital Jordan Algebras and Invertible Elements

Let g be a 3-graded Lie algebra, with corresponding Jordan pair (V +,V −). For x ∈ V ±, the
quadratic operator is defined by

Q±(x) : V ∓ → V ±, y �→ 1

2
T ±(x, y, x) = 1

2
[[x, y], x].
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An element x ∈ V − is called invertible if the linear map Q−(x) : V + → V − is invertible. It
can be shown that then V := V + with the bilinear product

y • z := 1

2
T +(y, x, z)

becomes a Jordan algebra with unit element e := Q(x)−1(x), and that every unital Jordan
algebra is obtained in this way. In other words, unital Jordan algebras are the same as Jordan
pairs together with a distinguished invertible element.

Example For gl(W) with W = E ⊕ F , the quadratic operator is given by

Q+(x) : Hom(E,F ) → Hom(F,E), y �→ xyx.

If K is a field and E and F are non-isomorphic vector spaces, then this map cannot be an
isomorphism, and hence the Jordan pair never has invertible elements. On the other hand, if
E and F are isomorphic as vector spaces, then Q+(x) is bijective if and only if x is invertible
as a linear map from E to F , and then Q+(x)−1 = Q−(x−1). Fixing for a moment such an
element x as an identification of E and F , the corresponding Jordan algebra structure on
V := V + ∼= V − ∼= End(E) is just the usual symmetrized product. Similarly, the Jordan pairs
of symmetric and Hermitian matrices always have invertible elements, whereas for n × n-
skew symmetric matrices this is true only when n is even.

Note that the bullet-product defined above depends on x. In the case of full matrix pairs
(End(E),End(E)), this dependence is not very serious: as long as x is invertible, all these
products are isomorphic, but for Hermitian matrix pairs (Herm(H),Herm(H)), it becomes
more subtle: it depends on the isomorphism class of x, seen as a Hermitian form on H; thus
in general the various Jordan algebras obtained by fixing the invertible element x need no
longer be isomorphic among each other (they are only “isotopic”).

3.5 The Fundamental Formula

The following identity which is valid in all Jordan pairs (V +,V −) is called the fundamental
formula: for all x ∈ V −, y ∈ V +,

Q−(Q−(x)y) = Q−(x)Q+(y)Q−(x).

There seems to be no “straightforward proof” of this formula, starting from the definition
of a linear Jordan pair given in Sect. 3.2. In [32] this formula is taken as one of the defining
axioms of a Jordan pair.

Example In case of the Jordan pair of rectangular matrices, (Hom(E,F ),Hom(F,E)),
the proof of the fundamental formula is easy: as seen above Q(x)z = xzx, and hence
Q(Q(x)y)z = Q(xyx)z = xyxzxyx = Q(x)Q(y)Q(x)z.

3.6 The Jordan-Lie Functor

To every Jordan triple system (V ,T ) we associate a new ternary product R = RT by anti-
symmetrizing in the first two variables:

[X,Y,Z] := RT (X,Y )Z := T (X,Y,Z) − T (Y,X,Z).

It is easily shown that this trilinear product is a Lie triple system, i.e.,
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• it is antisymmetric in X and Y ,
• it satisfies the Jacobi identity [X,Y,Z] + [Y,Z,X] + [Z,X,Y ] = 0,
• the endomorphism RT (X,Y ) : V → V is a derivation of the triple product [·, ·, ·].
The correspondence T �→ RT is called the Jordan-Lie functor (see [5]). Lie triple systems
are for symmetric spaces what Lie algebras are for Lie groups: an infinitesimal version that,
locally, determines them completely. Moreover, the Lie triple product is (possibly up to a
sign) the curvature tensor of the canonical connection (see [9, 31]). Many, but not all Lie
triple systems are obtained from Jordan triple systems via the Jordan-Lie functor; and some
Lie triple systems are obtained from 2 or even 3 different Jordan triple systems (cf. tables in
[5], Chap. XII).

Example Consider the Jordan triple system V + = V − = End(E) with T (x, y, z) = xyz +
zyx. In this case

RT (x, y)z = xyz + zyx − yxz − xxy = [x, y]z − z[x, y] = [[x, y], z]
is the triple Lie bracket in gl(E). For other classical Lie algebras, the triple Lie bracket can
be similarly obtained from a Jordan triple system, but never for exceptional Lie algebras.
“Classical” symmetric spaces essentially can all be realized as subspaces fixed under one
or several involutions (involutive automorphisms or anti-automorphisms) of Gl(n,K), and
hence their Lie triple system comes from a Jordan sub-triple system of M(n,n;K) (see [5]);
for exceptional symmetric spaces the situation is more difficult.

3.7 Inner Ideals

Left and right ideals of associative algebras are generalized by inner ideals in Jordan theory:
an inner ideal I in the +-part V + of a Jordan pair (V +,V −) is a linear subspace I ⊂ V +
which is stable under “multiplication from the inside”:

T +(I,V −, I ) ⊂ I.

John R. Faulkner has proposed to use inner ideals as a key ingredient for an incidence
geometric approach to Quantum Theory [21].

Example Consider the Jordan triple system V := V + = V − = End(E) with T (x, y, z) =
xyz + zyx, and let L ⊂ End(E) be a left ideal in the usual sense. Then T +(L,V −,L) ⊂
LV L + LV L ⊂ L; hence L is an inner ideal. Similarly for right ideals R. Clearly, inter-
sections of inner ideals are inner ideals; hence L ∩ R is an inner ideal. In finite dimension
over a field, all inner ideals of V + are of this form—see [12], Appendix A for an elementary
account on this.

4 Generalized Projective Geometries

This section makes the link between the preceding two ones: we define generalized projec-
tive geometries and explain the Jordan functor: Jordan structures are for generalized projec-
tive (and polar) geometries what Lie algebras are for Lie groups, namely an “infinitesimal
version”. This correspondence works even better than in the Lie case: we can go backwards
and “integrate” Jordan structures to geometries, regardless of the dimension and of the nature
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of the base field. Summing up, Jordan algebraic structures and their corresponding geome-
tries (equipped with a base point) are completely equivalent. As before, K is a commutative
unital base ring, such that 2 and 3 are invertible in K. (The generalization of the following
concepts to the case of characteristic 2 is an interesting open problem.)

4.1 Some Categorial Notions for Linear Pair Geometries

Recall the notion of linear and affine pair geometries from Sect. 2.2. Although implicitly
most has already been said in Sect. 2, let us be more explicit about categorial notions for such
pair geometries, such as morphisms, direct products and function spaces, connectedness,
faithfulness.

4.1.1 Morphisms I

A homomorphism between linear pair geometries (X+,X−) and (Y+,Y−) is a pair of maps
(g+, g−) : (X+,X−) → (Y+,Y−) preserving transversality and being compatible with the
structure maps in the sense that

g+�r(x,α, y) = �r(g
+(x), g−α,g+(y)),

and dually. This means simply that g+ induces by restriction a linear map from (α�, x)

to ((g−(α))�, g+(x)), and dually. In particular, we can speak of the automorphism group
Aut(X+,X−). If a base point (o−, o+) is fixed, then we call structure group the group
Aut(X+,X−;o+, o−) of automorphisms fixing the base point. From the definitions it fol-
lows that this group acts linearly on the linear space (o−)� × (o+)�.

4.1.2 Morphisms II

Adjoint or structural pairs of morphisms are given by pairs g : X+ → Y+, h : Y− → X−
such that transversality is preserved in the sense that x�h(α) iff g(x)�α, and, whenever
(x,h(α)) and (y,h(α)) are transversal, then

g�r(x,hα,y) = �r(gx,α,gy),

and similarly for �−
r ,�+ and �−. We write h = gt if (g,h) is a structural pair. The con-

dition means that g induces a linear map from ((hα)�, x) to (α�, gx). Note that every
isomorphism (g+, g−) in the sense of 4.1.1 gives rise to a structural pair (g+, (g−)−1), and
conversely, every bijective structural pair gives rise to an isomorphism. Thus we have two
different categories, but isomorphisms are essentially the same in both of them. For more
flexibility, we may consider, in both categories, pairs of maps that are not necessarily defined
everywhere.

Example What is your preferred notion of a homomorphism of projective spaces? Do you
prefer maps P(W) → P(V ) that are induced by injective linear maps W → V (hence are
defined everywhere), or do you prefer maps induced by arbitrary non-zero linear maps W →
V (hence are not everywhere defined as maps in the usual sense)? In the first case, you
prefer to look at projective spaces as members of the Category I (namely, in this category
the projective geometry (P(W),P(W ∗) is a simple object, and hence homomorphisms have
to be either injective or trivial). In the second case, you prefer to look at them as members
of the Category II (namely, in this category, the dual map f ∗ of an arbitrary non-zero linear
map f : W → V gives the pair ([f ], [f ]t ) = [f ], [f ∗])).
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4.1.3 Direct Products and Function Geometries

If (X+
i ,X−

i ;�i )i∈I is a family of linear or affine pair geometries, then the direct product,
with transversality given by

(xi)i∈I�(αi)i∈I iff ∀i ∈ I : xi�αi

is a linear (resp. affine) pair geometry: the new structure maps are simply the direct products
of those of (X+

i ,X−
i ).

Example A particularly interesting special case is the direct product of a geometry with its
dual geometry, (X+ ×X−,X− ×X+). It carries a canonical polarity, namely the exchange
map τ((x,α)) = (α, x).

Another important case are function geometries: the index set is some geometric space
M and all (X+

i ,X−), i ∈ M , are copies of a fixed geometry (X+,X−). In other words, we
consider the space of pairs of functions,

(Fun(M,X+),Fun(M,X−)),

equipped with the “pointwise product” (�r(f, g,h))(x) := �r(f (x), g(x),h(x)). Special-
izing to the case (X+,X−) = (KP

1,KP
1), we get the geometric analog of the usual func-

tion spaces Fun(M,K). The philosophy of non-commutative geometry associates the usual
function spaces (which are commutative geometries) to Classical Mechanics, whereas more
general non-commutative, but still associative, geometries are associated with Quantum Me-
chanics. In some sense, the preceding constructions provide a non-associative counterpart
to this philosophy—see [10] for a further discussion of this viewpoint.

4.1.4 Faithfulness (Non-degeneracy)

The geometry (X+,X−) is called faithful if X− is faithfully represented by its effect of lin-
earizing X+, and vice versa: whenever α� = β� as sets and as linear spaces (with respect
to some origin o), then α = β , and dually. (Faithfulness corresponds to non-degeneracy in
the Jordan-theoretic sense.) Note that, in a faithful geometry, the component g+ of an auto-
morphism (g+, g−) determines uniquely the second component g− which must correspond
to push-forward of linear structures via g+.

Example The classical geometries (Grassmann or Lagrangian geometries) are all faithful:
the projective group is faithfully represented by its action on X+. A very degenerate geome-
try is the trivial geometry: take a pair (E,F ) of K-modules with trivial transversality relation
(all (x,α) are transversal), and all affine structures are the same, equal to the given ones on
E, resp. F .

4.1.5 Connectedness and Stability

We will say that two points x, y ∈ X+ are on a common chart if there is α ∈ X−, such that
x, y ∈ α�. Equivalently, x� ∩ y� �= ∅. We will say that x, y ∈ X+ are connected if there is
a sequence of points x0 = x, x1, . . . , xk = y such that xi and xi+1 are on a common chart.
This defines an equivalence relation on X+ whose equivalence classes are called connected
components of X+. By duality, connected components of X− are also defined. The geometry
is called connected if both X+ and X− are connected.
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The pair geometry (X+,X−,�) will be called stable if any two points x, y ∈ X+ are on
a common chart, and dually for any pair of points α,β ∈ X−. Clearly, a stable geometry is
connected (the converse is not true).

Example In finite dimension over a field, Grassmann and symplectic Lagrange geometries
are stable because the affine parts α� then are Zariski-dense in X+, hence have non-empty
intersection. By contrast, the total Grassmann geometry (X+ = X− = the set off all linear
subspaces) is in general highly non-connected (in finite dimension, its connected compo-
nents are the Grassmannians of subspaces of a fixed dimension).

4.2 Laws

We now describe some more specific laws which may or may not hold in a linear pair
geometry. We assume from now on that our geometry is an affine pair geometry; the suitable
formulation of laws for geometries that are not affine is a completely open problem for the
time being. There are two “fundamental laws of projective geometry”, denoted in the sequel
by (PG1) and (PG2), which can be put in a very concise form as follows and on which we
will comment in the sequel:

(L(r)
o,α)

t = L(r)
α,o, (PG1)

(M(r)
x,y)

t = M(r)
y,x . (PG2)

The notation L,R,M refers to operators of “left”, “right” and “middle translations”: the
ternary map �r gives rise to the operators

�r(x,α, y) =: L(r)
x,α(y) =: R(r)

α,y(x) =: M(r)
x,y(α).

Here, L(r)
x,α is just the dilation denoted before by rx,α , and in an affine pair geometry we have

the simple relation R(1−r)
α,y = L(r)

y,α . Whereas these two operators act on (parts of) X+, the
middle translation M(r)

x,y acts from (a part of) X− to its “dual” X+ !

4.2.1 The First Law

We say that an affine pair geometry satisfies the First Law if (PG1) holds: for all transver-
sal pairs (o,α) and scalars r ∈ K, the pair of dilations (i.e., left translations) (ro,α, rα,o) =
(L(r)

o,α,L
(r)
o,α) forms a structural pair of morphisms. In view of the definition of a structural

pair in Sect. 4.1.2, this can be written as an identity in 5 variables: for all r, s ∈ K,

�+
r (o,α,�+

s (x,�−
r (α, o,β), y)) = �+

s (�−
r (o,α, x),β,�+

r (o,α, y)). (PG1)

If r is invertible, then the dilation ro,α is invertible on α�. We require that the pair (ro,α, rα,o)

extends to a bijection of (X+,X−); then the identity (PG1) can be interpreted by saying that
the pair

(g, g′) := (ro,α, r
−1
α,o)

is an automorphism (called an inner automorphism) of the affine pair geometry (X+,X−).
In particular, this means that to every transversal pair (o,α), there is attached a homomor-
phic image of K

×, acting by automorphisms of (X+,X−) and preserving the pair (o,α).
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The First Law thus ensures a rich supply of automorphisms, and it is not hard to show that
connected (PG1)-geometries are homogeneous: the automorphism group G = Aut(X+,X−)

acts transitively on X+, on X− and on (X+ × X−)�, so that, with respect to a fixed base
point (o+, o−), we can write

X+ = G/P −, X− = G/P +, (X+ ×X−)� = G/H with H = P + ∩ P −.

In the non-degenerate finite-dimensional cases over K = C or R, G turns out to be a Lie
group, and the groups P ± are maximal parabolic subgroups of G.

Example The proof that the first law holds, for invertible scalars r , is easy in the case of
Grassmann and Lagrangian geometries: it suffices to remark first that the natural action of
the projective group P Gl(W) on (GrasF

E(W),GrasE
F (W)) is by automorphisms, and second

that the automorphism ridE ⊕ r−1idF acts on the space of complements of E by r−1 and on
those of F by r ; put together, this is precisely (PG1). For non-invertible r , the proof is essen-
tially the same (cf. [8]). Lagrangian geometries inherit this law since they are subgeometries
of Grassmann geometries.

The First Law should be seen as the “geometric version” of the identity (LJP2) of a Jor-
dan pair: both identities have the same formal structure, with automorphisms and products
replaced by derivations and sums, and the inversion of the scalar by the minus-sign in the
middle term in (LJP2).

4.2.2 The Second Law

We say that an affine pair geometry satisfies the Second Law if (PG2) holds, i.e., if, for all
pairs (x, y) ∈ X+ × X+ lying on some common chart α (i.e., α ∈ x� ∩ y�), and for all
r, s ∈ K, the pair of “middle translations” (M(r)

x,y,M
(r)
y,x) acts as a structural pair between the

geometry (X+,X−) and its dual geometry (X−,X+). As for the First Law, this is an identity
in 5 variables:

�+
r (x,�−

s (α,�+
r (y,β, x), γ ), y) = �+

s (�−
r (x,α, y),β,�+

r (x, γ, y)). (PG2)

Of course, we require also the “dual version” of this identity to hold. The scalar r = 1
2 plays a

special rôle with respect to this law, because it satisfies M(r)
x,y = M(r)

y,x , and hence the operator
f = M(r)

x,y is “self-adjoint” in the sense that f t = f .

Example The proof that the second law holds in a Grassmann geometry is elementary, but
considerably more tricky than the proof of the First Law—one may use the explicit formula
from Sect. 2.2.2 for the multiplication maps and then prove (PG2) in a suitable affinization,
see [8]. In the course of that proof, one sees that (PG2) is indeed the geometric analog of the
Fundamental Formula.

4.3 Generalized Projective Geometries

A generalized projective geometry over K is an affine pair geometry over K such that the
First and the Second Law are satisfied in all scalar extensions of K. The latter, slightly
technical, condition is natural from an algebraist’s point of view; it ensures that to every
geometry (X+,X−) one can associate, by scalar extension from K to the ring K[ε] of dual
numbers over K, in a functorial way, a new geometry (TX+, TX−), defined over K[ε], and
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called the tangent geometry (cf. [6]). In other words, one may apply some algebraic version
of differential calculus. We advise the reader to think for the moment of (X+,X−) as some
kind of smooth manifold, so that the tangent bundle in the usual sense exists; by the usual
chain rule of differential calculus, the tangent maps T � then satisfy the same identifies as
the structure maps themselves, so that the tangent geometry satisfies again (PG1) and (PG2)
over the tangent ring T K which is nothing but K[ε] (see [9] for a justification of this point
of view).

Example Grassmann geometries: the tangent geometry of (GrasF
E(W),GrasF

E(W)) is simply
(GrasT F

T E(T W),GrasT F
T E(T W)), where T W = W ⊕ εW , etc., with ε2 = 0 is constructed in

the same way as the complexification of a real vector space, replacing the condition i2 = −1
by ε2 = 0. The action of P GlK(W) is then replaced by the action of P GlK[ε](T W). Even if
there is no differentiable structure around, everything behaves like a tangent object should
do. Thus Grassmann geometries are indeed generalized projective geometries, and so are
Lagrangian geometries.

4.4 Generalized Polar Geometries

A polarity is an isomorphism of order 2 of (X+,X−) onto its dual geometry (X−,X+)

and admitting at least one non-isotropic point (see Sect. 2.3). A generalized polar geometry
over K is a generalized projective geometry over K together with a fixed polarity p := p+ :
X+ → X−, p− = p−1. Thus by definition the set M := M(p) of non-isotropic elements
x in X+ is non-empty. The scalar r = −1 has the remarkable property that it is its own
multiplicative inverse. This property is the key for realizing on the set M(p) the structure of
a symmetric space: one deduces from the First Law that then the binary map

μ : M×M → M, (x, y) �→ μ(x, y) := �−1(x,p(x), y) = (−1)x,p(x)(y)

is well-defined, and that is satisfies the following identities: ∀x, y, z ∈ M,

μ(x, x) = x, (S1)

μ(x,μ(x, y)) = y, (S2)

μ(x,μ(y, z)) = μ(μ(x, y),μ(x, z)). (S3)

In other words, M is equipped with a family of symmetries σx = μ(x, ·) such that the σx

are automorphisms of order 2 fixing x. Following Loos [31] we say that M is a symmetric
space if, moreover, the map μ is smooth and the tangent map Tx(σx) is the negative of the
identity of the tangent space TxM. In fact, in our purely algebraic setting, this last property
makes sense algebraically because σx is nothing but the dilation (−1)x,p(x) which is just the
negative of the identity map on the linear space ((p(x))�, x). By some abuse of language,
we thus may call M = M(p) the symmetric space of a generalized polar geometry. (Under
suitable assumptions, this is indeed a smooth symmetric space in the differential geometric
sense, see Theorem 4.6.3 below. If, moreover, the dimension is finite over K = R, then
the topological connected components are homogeneous symmetric spaces G/H , see [31].)
Since the symmetric space clearly depends functorially on the generalized polar geometry,
this correspondence is called the geometric Jordan-Lie functor (see [5, 6]). We have already
given in Sect. 2.3.3 some examples of symmetric spaces arising in this way.
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4.5 Null Geometries

An absolute null geometry over K is a generalized projective geometry over K together
with a fixed absolute null-system n : X+ → X− (that means that n commutes with all inner
automorphisms of (X+,X−)). Such geometries have several remarkable properties, some
of which can be used to give equivalent characterizations (cf. [7]); for instance, they admit
“inner polarities”:

Example Fix two points x, y ∈ X+ and consider the midpoint map associating to every
affinization α ∈ X+ the geometric midpoint � 1

2
(x,α, y) ∈ X+ of x and y in the affine part

defined by α. Null geometries are characterized by the remarkable property that x and y

can be chosen such that every “generic” point can appear as geometric midpoint of x and y.
Then the midpoint map extends to a bijection from X− onto X+, and the Second Law now
implies that this bijection is a polarity, called an inner polarity. Just to see how surprising this
property is, consider the case of ordinary projective geometry: here the geometric midpoint
of x and y always lies on the projective line spanned by x and y, hence has a rather special
and non-generic position. However, if the projective space itself was already a projective
line, then indeed every point different from x and y can play the role of a midpoint of x

and y. This corresponds to the fact, already mentioned in the examples of Sect. 2.3.2, that
among the usual projective spaces only the projective line is an absolute null geometry.

4.6 The Jordan Functor

Recall that the Lie functor describes the correspondence between Lie groups and Lie al-
gebras. The Jordan analog of this correspondence is described by the following result; in
contrast to the Lie functor, the correspondence works equally well in arbitrary dimension
and over general base fields and rings (we only have to assume that 2 and 3 are invertible
in K).

Theorem 4.6.3 (The Jordan functor) There are correspondences (essentially bijections) be-
tween the following objects:

(1) connected generalized projective geometries (X+,X−) with base point (o+, o−), and
Jordan pairs (V +,V −);

(2) connected generalized polar geometries (X+,X−,p) with base point o, and Jordan
triple systems V ;

(3) connected absolute null geometries (X+,X−, n) with base point o, and Jordan algebras
V admitting a unit element e.

Moreover, these correspondences are functorial in both directions. (To be more precise, we
have two functors D “differentiating at the base point” and I “integrating” such that D ◦ I

is the identity; under certain restrictions such as finite dimensionality over a field, D and I

are indeed equivalences of categories.) Moreover, under these correspondences,

(i) the (algebraic) Jordan-Lie functor from Sect. 3.6 and the geometric Jordan-Lie functor
correspond to each other;

(ii) inner ideals correspond to intrinsic subspaces containing the base point.

Finally, assume K = R, C or any other topological ring having a dense unit group. Then
X+ and X− are smooth manifolds over K if (and only if) the Jordan pair satisfies a certain
regularity condition (called a continuous quasi inverse Jordan pair in [14]). If we add a
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continuous polarity p to these data, then the corresponding symmetric space M(p) is an
open submanifold of X+, and its symmetric space structure is smooth.

Example Under the correspondence from the theorem,

• Grassmann geometries (GrasF
E(W),GrasE

F (W)) correspond to the Jordan pair of “rectan-
gular matrices” (Hom(E,F ),Hom(F,E)). If E ∼= F , then this is a null geometry corre-
sponding to the Jordan algebra End(E).

• Lagrangian geometries of a symplectic form are null geometries and correspond to Jordan
algebras of symmetric matrices.

• Lagrangian geometries of a symmetric neutral form correspond to Jordan pairs of skew-
symmetric matrices. They are null-geometries if these matrices are of even size (2n×2n).
For K = C, Lagrangian geometries of a Hermitian neutral form correspond to Jordan
pairs of skew-Hermitian matrices; they are always null geometries, corresponding to the
isomorphism between skew-Hermitian and Hermitian matrices and to the Jordan algebra
structure on the latter.

• Projective quadrics carry a structure of a null geometry that corresponds to the spin-factor
(see Item (4) in the Example of 3.1).

Remarks about the Theorem and its Proof As for the correspondence between Lie groups
and Lie algebras, one, has to give two constructions that are inverse to each other: start-
ing with a geometry, we get the associated infinitesimal object by “differentiation”. For Lie
groups, differentiating once, one simply gets the tangent space without any useful informa-
tion (the Lie algebra g with addition, but no bracket); differentiating ones, one gets the Lie
bracket, and finally one needs a third order argument to prove the Jacobi identity. In the
present case the situation is quite similar (see [6]).

The inverse construction is fairly easy: roughly, starting from a Jordan pair (V +,V −),
one uses the Kantor-Koecher-Tits construction described in Sect. 3.2 to define the asso-
ciated 3-graded Lie algebra g. Since elements of ad(g1) and ad(g−1) are 2-step nilpo-
tent, their exponential is just a quadratic polynomial, so that we have well-defined groups
U± = exp(ad(g±1)). The subgroup G = 〈U+,U−〉 of Aut(g) generated by these two groups
is called the elementary projective group of the Jordan pair. Let H ⊂ G be the stabilizer of
the 3-grading (“diagonal matrices in G”) and P ± := HU± (“parabolics”; this is a semidirect
product). Then (X+,X−) = (G/P −,G/P +), with transversality defined by the G-orbit of
the canonical base point (eP −, eP +), is the geometry sought for. The hard part is now to
verify that (PG1) and (PG2) indeed hold and that the construction is functorial (see [6]).

Part (3) on null geometries is proved in [7], and statement (ii) on intrinsic subspaces
in [12]. The final statement on smooth structures has been obtained in joint work with
K.-H. Neeb [13, 14]; see also [10]. The setting of differential calculus, smooth manifolds
and Lie groups over topological base fields and rings has been developed in [15]—see also
[9], Sect. 2, for the basic facts; we hope to convince the reader that the resulting theory really
is much simpler than “usual” differential calculus in Banach or Fréchet spaces. It covers, in
particular, the interesting cases K = Qp (the p-adic numbers), K = R × R (para-complex
numbers) and K = R[ε] (dual numbers). An approach to differential geometry, Lie groups
and symmetric spaces in this general framework is worked out in [9]; much of the algebraic
framework developed there has been designed aiming at applications in situations like the
ones discussed here.
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Example A Banach Jordan pair is a pair of Banach spaces with a continuous trilinear Jor-
dan pair structure. In this case the conditions from [14] are always fulfilled, so that the
corresponding geometry (X+,X−) is indeed a pair of smooth (Banach-)manifolds. (This
can also be proved by more conventional functional analytic methods, see the monograph
[40].) For instance, full or Hermitian algebras of continuous operators are Banach Jordan
pairs, and hence the geometry associated to Herm(H) is a smooth manifold, in fact iso-
morphic to U(H). There is a huge literature on Banach Jordan structures, see references
in [1, 24, 41].

5 Comments and Prospects

As said in the introduction, the theory exposed in this paper is purely mathematical; the
description by using terms borrowed from the language of physics may be seen as a game
without any relation to the “real world”. Be this as it may, I would like to put forward some
arguments why I think that it is interesting to play this game and maybe to pursue it even
further:

(1) First of all, it is certainly not the only, but at least one possible interpretation of the
“Jordan Ansatz”, and hence it does cover the standard setting of quantum mechanics
(the Jordan algebra Herm(H)): thus it should have some meaning, be it relevant or not.

(2) Apart from the original motivation by the Jordan Ansatz, our setting incorporates other
viewpoints that have shown up in the search for foundations of quantum mechanics:

• the fundamental rôle of projective geometries ([42], p. 6: “. . . quantum mechani-
cal systems are those whose logics form some sort of projective geometries”, [16]:
“. . . any specific feature of projective geometry gives rise to a physically realizable
characteristic of quantum mechanics”);

• linearity ([2]: “Perhaps the habitual linear structures of quantum mechanics are anal-
ogous to the inertial rest frames in special relativity . . . ”);

• duality ([36], p. 527: “The pure philosopher may start from a postulated unity and call
it Being. He may then concede the necessity of distinguishing two modes of being and
call them reality and logos or whatever else . . . A physicist groping with his science
is after all following the same path . . . ”);

• quantum non-locality (see the comparison with twistor theory in Sect. 2.4.2);
• Hermitian symmetric spaces (see, e.g., the paper “The pure state space of quantum

mechanics as Hermitian symmetric space” [19]. One should not underestimate the
fact that modern Jordan theory is intimately related to the theory of finite and infinite
dimensional Hermitian symmetric spaces, by work of Koecher, Loos, Kaup, Upmeier
and others; cf. [28, 29, 40] and the “Colloquial Survey of Jordan Theory” in [34].
This aspect has not been noticed at all in [19]).

• the search for using “exceptional” groups and geometries in physics (Jordan theory
is deeply mixed into the structure of Freudenthal’s “magic square” which is a main
source of exceptional geometries; cf. also references in [24]).

If one strives for unity of mathematics, it is very satisfying to realize that all these aspects
can be incorporated, without mutilating any of them, in a common framework.

(3) I consider “non-associative geometry” as some sort of natural counterpart of “non-
commutative geometry” (see Sect. 4.1.3 and [10]; as usual “non” means here: “not
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necessarily”).1 As I tried to explain in my discussion of the quotation from [1], even
if at the end we will be forced to return to some “associative geometry” for describing
quantum mechanics, the decomposition of the associative product in its Jordan and Lie
part somehow seems to correspond to the fundamental problem of the coexistence of the
U-evolution and the state reduction R. Therefore it might be useful to widen the scope
from associative to non-associative structures.

(4) Be our universe unique or not, a mathematician has the natural desire to look at it as
belonging to a category, so that usual categorial notions should apply to it. This means
that he would like to understand the universe by its properties and not by a construction
such as “take an infinite dimensional separable Hilbert space and do this and that . . . ”.
We encounter the same problem already on the level of ordinary projective spaces: one
can define them by the usual construction (“take the rays in a vector space . . . ”), or by
intrinsic properties—when doing the latter, all modern authors more or less follow the
famous model of Hilbert’s “Grundlagen der Geometrie” where the incidence axioms of
projective geometry were shown to be the intrinsic geometric properties sought for. We
simply propose to replace here “incidence axioms” by other foundational properties,
namely by “laws”, in the sense of Sects. 2.2.2 and 4.2. It turns out that, unlike incidence
structures, algebraic laws are very flexible and can be adapted to a great variety of sit-
uations. For instance, notions of direct products and bundles (see below) exist in our
setting, whereas they are in general not compatible with interesting incidence axioms
(the direct product of two ordinary projective spaces is no longer an ordinary projective
space!). In some sense, it seems to me that this is the deeper mathematical reason why
the incidence geometric approach to quantum mechanics, due to Birkhoff and von Neu-
mann, has been gradually abandoned, in spite of its great mathematical beauty (see the
book [42]).

(5) I already mentioned (Sect. 2.5) the problem that “tensor products of Jordan algebras”
do not exist and hence it is not clear at all how many-particle systems should be mod-
elized in our geometric approach. However, thanks to the flexibility of algebraic laws
just mentioned, the situation is not as hopeless as it might look. For several reasons, it
seems to me that the suitable geometric setting replacing the tensor product construction
from usual quantum mechanics should be related to a notion of vector bundles in the
category of generalized projective geometries. In fact, “vector bundles in the category
of symmetric spaces” have been introduced and studied in [20] and [11]: essentially,
a vector bundle in some geometric category is a vector bundle F over a base M such
that both F and M are objects of the category and such that some natural compatibil-
ity conditions are satisfied. On the infinitesimal level, the corresponding notion is the
one of general representation or m-module for the tangent object m of the base M .
For instance, in the category of Lie groups we get the usual notion of representation or
G-module of the base G. Now, similarly as in the category of Lie groups, for symmet-
ric spaces and generalized projective geometries, there exist notions replacing tensor
products for such representations. As a variant of this, one may also leave the category
of vector bundles and modelize many-particle systems by multilinear bundles which
have been introduced in [9] precisely with the aim to replace tensor products of vector
bundles by more geometric notions. In any case, it is tempting, by employing the lan-
guage of m-representations, to associate “atoms” with simple geometries or irreducible

1As I learned later, the term “non-associative geometry” has previously been introduced by L.V. Sabinin [35]
in the more specific context of quasigroups and loops. Symmetric spaces are prominent examples of such
structures, but as far as I know, Jordan algebraic structures cannot be interpreted in this context.
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representations, “molecules” with suitable extensions of simple geometries, and, on the
opposite end, to interpret “classical mechanics” via function geometries, that is, certain
continuous direct products of the standard fiber which has not much interesting internal
structure.

(6) The fact that we may think of generalized projective geometries both classically and
quantum-mechanically is rather puzzling (see example in Sect. 2.2.3): the conformal
compactification of Minkowski-space as well as the geometry of quantum mechanics are
examples of generalized projective geometries. Is this an accident? Some speculations
about this question can be found in [18].2

(7) The mathematical similarity between compactified Minkowski space and the general-
ized projective geometry of quantum mechanics suggests that it may be necessary to
carry these ideas even further and to go beyond the category of generalized projective
geometries: namely, comparing with the historical development of theories from New-
tonian mechanics via Special Relativity to General Relativity, Newtonian mechanics
would correspond to the standard Hilbert space formulation of quantum theory, Spe-
cial Relativity (in compactified Minkowski space) would correspond to our hypothetical
“generalized projective” formulation, and hence General Relativity should correspond
to an even more hypothetical generalization in terms of geometries that are “modelled
on generalized projective geometries”, but are no longer “conformally flat” (in a suit-
able sense; recall that compactified Minkowski space is conformally flat). In finite di-
mension, geometries modelled on certain homogeneous spaces G/P have been studied
by Elie Cartan using what is nowadays called a Cartan connection (which generalizes
the projective and conformal connections; see [39] for a modern presentation). As far as
I know, Jordan theory or more general non-associative algebra have not yet been system-
atically used as an approach to study the corresponding Cartan geometries, but certainly
this would open the way for a theory of their infinite-dimensional generalization. Sum-
ming up, if the analogies mentioned above have some meaning, it could be hoped that
Jordan geometry gives some hints on what the last two items in the following matrix
might be:

geometry: linear; affine projective manifold

mechanics: classical special relativistic general relativistic

quantum theory: Hilbert space q.m. projective q.m. ? Cartan geometric q.m. ??
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